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In the Robin and Day classification, mixed-valence systems
are characterized as Class I, II or III depending on the
strength of the electronic interaction between the oxidized
and reduced sites, ranging from essentially zero (Class I), to
moderate (Class II), to very strong electronic coupling
(Class III). The properties of Class I systems are essentially
those of the separate sites. Class II systems possess new
optical and electronic properties in addition to those of the
separate sites. However, the interaction between the sites is
sufficiently weak that Class II systems are valence trapped
or charge localized and can the be described by a double-
well potential. In Class III systems the interaction of the
donor and acceptor sites is so great that two separate
minima are no longer discernible and the energy surface
features a single minimum. The electron is delocalized and
the system has its own unique properties.

The Robin and Day classification has enjoyed consider-
able success and most of the redox systems studied to date
are readily assigned to Class II. However the situation
becomes much more complicated when the system shows
borderline Class II/III behavior. Such “almost delocalized”
mixed-valence systems are difficult to characterize. In this

article spectral band shapes and intensities are calculated
utilizing increasingly complex models including two to four
states. Free-energy surfaces are constructed for harmonic
diabatic surfaces and characterized as a function of
increasing electronic coupling to simulate the Class II to III
transition. The properties of the charge-transfer absorption
bands predicted for borderline mixed-valence systems are
compared with experimental data. The treatment is re-
stricted to symmetrical (DG0 = 0) systems.

1 Introduction

In the late 1960s, the properties of molecular mixed-valence
systems began to attract great interest because of the new
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properties exhibited when significant electron coupling be-
tween the donor and acceptor sites is present and because of the
relationships between the optical properties and electron
transfer rates of the species.1,2 Mixed-valence molecules
contain donor (D) and acceptor (A) sites separated by a bridge
(B).

Most are based on d6–d5 metal centers, generally Ru(II)/
Ru(III).3–5 Systems of this type are therefore the focus of this
article.

Since the 1990s the field has experienced a renaissance as a
consequence of the synthesis and characterization of novel
donor–acceptor systems, particularly those based on purely
organic species and those at the borderline between Class II and
III.6–11 Indeed modeling/interpreting the behavior of systems in
the Class II to III transition regime poses a formidable
challenge.

The theory of electron transfer reactions has been presented
in many texts and articles.12,13 Here we consider the concepts
relevant to the description of symmetric mixed-valence mole-
cules and the energies and shapes of their donor–acceptor
(metal-to-metal charge transfer, MMCT) absorption bands. We
also consider the limitations of the traditional two-state model
and the effects of introducing a third and fourth electronic state
derived from electron transfer to or from a bridging group.

Several recent studies have focused on comparison of the
shapes of the experimental intervalence bands in mixed-valence
systems with the predictions of the two-state model. The
systems studied include bishydrazine derivatives,7 bistriar-
ylamine derivatives,6 and a variety of bridged organic and
transition-metal systems.8 It was noted that an improved fit of
the asymmetric charge transfer spectra and intramolecular
electron transfer rate constants for the bishydrazine radical
cations could be obtained using quartic-augmented diabatic
energy surfaces. Such a treatment yields absorption bands that
are narrower on the low-energy side.7 Band asymmetry
ascribable to large electronic interaction was not considered.
Despite the improved agreement obtained with the quartic term,
the authors caution that there is no particular significance to this
type of correction—other functions may fit as well.14,15

Recently it has been shown that the band asymmetry is a natural
result of combining harmonic diabatic states in the strong
interaction region.6,15

In this article the classical model for MMCT band asymmetry
is extended and spectral band shapes and intensities are
calculated for increasingly complex models including two to
four states. Free-energy surfaces are constructed utilizing
harmonic diabatic (zero-order) states that satisfy the Gener-
alized Mulliken–Hush condition that the transition moment
connecting diabatic states be zero.16 The surfaces are then
characterized as a function of increasing electronic coupling to
simulate the Class II to III transition. A Boltzmann distribution
over the ground state surface is assumed and the properties of
the charge-transfer absorption bands predicted for borderline
mixed-valence systems are compared with experimental data.
We first consider a two-state system consisting only of an initial
and a final state or a ground and one excited state. For
conciseness, we restrict the discussion to symmetrical (DG0 =
0) systems; however, the treatment can readily be extended to
unsymmetrical systems in which the electron transfer is
accompanied by a net free energy change. We note that this
treatment is based on a classical limit; starting from a quantum
mechanical limit is another point of departure.17

Describing and classifying mixed-valence systems

Consider a mixed-valence molecule that has a symmetric bridge
and two redox sites (the donor and acceptor sites) that are
identical except for their oxidation states, for example,
(NH3)5RuII-NC5H4-C5H4N-RuIII(NH3)5

5+, where NC5H4-
C5H4N is 4,4A-bipyridine. Due to this difference the equilibrium
intramolecular and solvent configurations differ at the donor
and acceptor sites. As a consequence the two sites are not
equivalent and there exists a barrier to their interconversion.
Because electron motion is much faster than nuclear motion,
energy conservation requires that, prior to the actual electron
transfer, the nuclear configurations of the reactants and the
surrounding medium adjust from their equilibrium values to an
intermediate configuration in which there is no energy change
when the electron transfers from the donor to the acceptor. For
metal complexes in a polar solvent, the nuclear configuration
changes involve adjustments in the metal–ligand and intra-
ligand bond lengths and angles, and changes in the orientations
of the surrounding solvent molecules. Similar adjustments are
also required in purely organic systems. In common with other
chemical reactions, the intramolecular electron transfer reaction
can be described in terms of the motion of the system on an
energy surface from the initial to the final state via the activated
complex (transition state). The electronic interaction of the sites
will be very weak, and their interconversion slow, when the
sites are far apart or their interaction is symmetry or spin
forbidden.

The interconversion of the two states of a weakly coupled
mixed-valence system is both an isomerization and a charge-
transfer reaction.

DBA " D+BA2 = ABD (1)

In either case the distortions of the initial and final states of the
mixed-valence system can be described in terms of displace-
ments on harmonic free-energy curves with identical force
constants. This is illustrated in Fig. 1 where the free energy of

the initial state (DBA) plus surrounding medium (Curve Ga,
wave function ya) and the free energy of the final state (ABD)
plus surrounding medium (Curve Gb, wave function yb) of a
symmetric mixed-valence system are plotted vs. the reaction
coordinate X. The force constants of the parabolas are equal to
2l, where l is the vertical difference between the free energies
of the DBA and ABD states at the equilibrium configuration of

Fig. 1 Plots of the free-energies of the initial (left-hand parabola, Ga) and
final (right-hand parabola, Gb) diabatic states and the lower (G1) and upper
(G2) adiabatic states of a symmetric mixed-valence system vs. the reaction
coordinate. Eop is the energy of the donor–acceptor (metal-to-metal MMCT
or intervalence IVCT) charge-transfer transition and Hab is the electronic
coupling matrix element between the two diabatic states.
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DBA (or ABD). l is generally referred to as the reorganization
parameter and X varies from 0 to 1 as the reaction proceeds.

The free energies Ga and Gb are the energies of the zero-order
or diabatic states of the system and are related to X by

Ga = lX2 (1a)

Gb = l(X 2 1)2 (1b)

The interaction of the zero-order states gives rise to two linear
combinations, the first-order or adiabatic states,

y1 = caya + cbyb (2a)

y2 = cayb 2 cbya (2b)

where y1 is the wave function for the lower (ground) and y2 is
the wave function for the upper (excited) adiabatic state
(energies G1 and G2, respectively), and the mixing coefficients
are normalized, i.e., ca

2 + cb
2 = 1. The overlap integral Sab is

neglected (or is zero by construction). The energies of the
adiabatic states, obtained by solving the two-state secular
determinant, are given by

(3a)

(3b)

Utilizing eqn. (3), the difference between the adiabatic energies
is given by

(G2 2 G1) = [(Gb 2 Ga)2 + 4H2
ab]1/2 (4a)

= {[l(1 2 2X)]2 + 4H2
ab}1/2 (4b)

As Hab increases, the adiabatic minima shift toward 0.5 and are
given by18

(4c)

As shown in Fig. 1, the splitting at the intersection is 2Hab and
the barrier to electron transfer is lowered by Hab. The free
energy of activation for interconversion of the sites is then

(5a)

with corresponding rate constant

(5b)

where the prefactor A is dependent on the electronic coupling.
For weak coupling (‘nonadiabatic’ electron transfer), the
prefactor is an electron-hopping frequency equal to [2H2

ab
/h)[p3/lRT]1/2 while, for strong coupling (‘adiabatic’ electron
transfer), the prefactor is determined by a nuclear vibration
frequency nn. In cases where the direct donor–acceptor
interaction is very small, Hab can be enhanced through the
perturbative mixing of the ground state with higher electronic
states. This mechanism for increasing the electronic coupling is
termed ‘superexchange’. At the adiabatic minimum the separa-
tion of the adiabatic curves is l, while the diabatic curves are
separated by l[1 2 4(Hab/l)2]1/2.

Three classes of systems may be distinguished depending on
the magnitude of the electronic coupling of the donor and
acceptor sites. In Class I systems the coupling is very weak and
the properties of Class I systems are essentially those of the
separate sites (i.e., the adiabatic energy curves are very close to
the diabatic curves). Activated electron transfer either does not
occur at all or occurs only very slowly (because of the very
small value of Hab) with DG* = l/4. The intensity of the optical
electron transfer band is very weak. Class II systems (0 < Hab

< l/2) possess new optical and electronic properties in addition
to those of the separate reactants. They remain valence trapped
or charge localized: the electron transfer processes range from

nonadiabatic (Hab < 10 cm21) to strongly adiabatic (Hab > 200
cm21) with DG* given by eqn. (5a). Eqn. (5) holds as long as
the ground state is described by a double-well potential, i.e., as
long as the system remains valence trapped. In Class III systems
the interaction of the donor and acceptor sites has become so
large that the ground state has only a single minimum at X =
1/2. This is the delocalized case which occurs when Hab4 l/2.
The latter condition follows readily from the zero barrier limit
(DG* = 0) of eqn. (5a).

The Class II–III transition

The transition state for a Class II system is symmetric with a
nuclear configuration that is the average of the donor and
acceptor sites and with the electron rapidly oscillating between
the two sites. Consequently the transition state for a Class II
system has Class III character. Within activated complex theory
the transition state is in equilibrium with the initial state. The
equilibrium constant for the conversion of a Class II system to
the Class III (transition state) system [eqn. (6)] is then
determined by the free energy of activation for the electron
transfer [eqn. (7)]

Class II " Class III KII,III (6)

KII,III = exp(2DG*/RT) (7)

where DG* is given by eqn. (5a). The electron hopping rate in
the transition state may be estimated13 from 2Hab/h, the
frequency of oscillation between two degenerate diabatic states.
Thus for a given value of l, the electron hopping rate in the
transition state for a Class II system is less than the rate for a
single minimum (larger Hab) Class III system. In this respect the
electron is not fully delocalized in the transition state for a Class
II system. As Hab increases, the transition state for a Class II
system ultimately merges with the initial and final state minima
to form the single minimum of the Class III system. When DG*
≈ RT, comparable amounts of Class II and Class III systems
will coexist and the system should exhibit properties character-
istic of both.

Dynamic considerations lead to a similar conclusion. For the
present purpose we distinguish two limiting contributions to l:
slow modes usually associated with solvent reorientation, l0,
which have a characteristic time of ~ 1–10 ps, and all other
faster modes, S li, typically collective translations and bond
vibrations, that are coupled to the charge transfer.

l = l0 + S li (8)

An operational definition for the Class II–III transition—that
solvent modes are averaged but inner-shell modes are not—has
been proposed by Demadis et al.3,10,11 With this assumption, a
system will show both Class II and Class III properties if the rate
constant for adiabatic intramolecular electron transfer [calcu-
lated from eqn. (9)]

ket = nnexp(2DG*/RT) (9)

is intermediate between the solvent reorientation frequency
(1011–1012 s21) and typical bond vibration frequencies
(1013–1014 s21). This translates to ket ~ 1012–1013 s21 which,
for nn ~ 1013 s21, implicates a free energy barrier of the order
of RT which yields 1 ! 2Hab/l! [1 2 (4RT/l)1/2]. For a l value
of 8000 cm21 (1 eV), the free energy barrier will be < RT when
2Hab/l 4 0.7. Consequently, for the present purpose, systems
for which 0.7 < 2Hab/l < 1 can be considered to be in the Class
II–III transition regime. If the vibrational barrier is much
smaller than the solvent barrier, then the rate constant for
electron transfer in the transition regime will be determined by
the solvent reorientation frequency. There is good experimental
evidence for this type of behavior19 in bridged cluster
systems.20
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In a semiclassical framework, the lower frequency solvent
modes are treated classically while the higher frequency
vibrational modes can tunnel through the reorganization barrier.
If an increasing electronic coupling first eliminates the solvent
barrier (evidently requiring l0 < S li) then in the intermediate
regime where l0 < 2Hab < l0 + S li, the solvent configurations
of the donor and acceptor sites will be averaged and solvent
reorientation will no longer contribute to the thermal or optical
barrier to electron transfer but the two redox sites will still be
structurally distinct. Although we are not aware of a rigorous
theoretical justification for this interpretation there are experi-
mental observations consistent with such hybrid behavior.10,11

Finally, although a system is considered fully delocalized when
2Hab > l, it could still exhibit IR absorption characteristic of
both Class II and Class III if the stretching vibrations of the
bridging ligand acquire intensity through the transient charge
localization associated with the out-of-phase combination of the
relatively slow breathing vibrations of the terminal metal
complexes. In effect, transient charge localization, sufficient to
create a dipole across the bridging ligand on a time scale
somewhat longer than associated with its stretching vibrations,
could be occurring within the single broad energy minimum of
a borderline Class III system.3

2 A two-state model for the charge-transfer
transition

The intervalence charge-transfer transitions in Class II and
Class III systems have different characteristics. In this section
we consider the energy, intensity, and shape of the absorption
bands in Class II, Class III, and borderline systems.

2.1 The charge-transfer band maximum

Since the vertical difference between the diabatic energies at
the equilibrium configuration (adiabatic minimum) is18 l[1 2
4Hab/l, it follows from eqn. (4a) that the vertical difference
between the adiabatic energies at the equilibrium configuration
is equal to l. This result is independent of Hab for Hab5 l/2. In
other words, the vertical difference between the free energies of
the two states of a symmetrical mixed-valence system remains
equal to l at either equilibrium configuration regardless of the
magnitude of the electronic coupling as long as the system
remains valence trapped.21 Although the repulsion of the upper
and lower curves increases with Hab, this is exactly cancelled by
the two minima moving closer together.

When the electronic interaction of the donor and acceptor
centers is significant, it is useful to express hnmax for a Class II
system in terms of lA, the reorganization energy corrected for
charge delocalization (i.e., the ‘actual’ reorganization en-
ergy):18

hnmax = l = lA + 4H2
ab/l (10)

The actual reorganization energy is related to l by

lA = l(1 2 4H2
ab/l2) (11)

where the (1 2 4Hab
2/l2) term is the square of the charge

transferred in the optical transition. In terms of eqn. (10), there
are two contributions to the transition energy. The first is the
reorganization energy which decreases with the degree of
charge delocalization and the second is a consequence of the
stabilization of the ground state and the destabilization of the
excited state through the electronic interaction: this contribution
increases with the degree of charge delocalization. These two
effects of delocalization exactly cancel and the transition energy

for Class II species remains equal to l regardless of the degree
of localization.

The above equations have interesting, albeit disconcerting,
implications for the solvent dependence of the transition energy:
for a Class II system the absorption band maximum is predicted
to show the full solvent dependence regardless of the value of
Hab. By contrast, the energy of the optical transition in a
symmetrical Class III system is given by

hnmax = 2Hab (12)

and the transition energy increases with the strength of the
electronic interaction. By the same token, within the two-state
model, Hab for symmetrical Class III complexes can be obtained
directly from the energy of the optical transition. Note that the
optical transition in a symmetrical Class III system, although
intense, no longer involves charge transfer and is therefore not
accompanied by a net dipole-moment change and should show
no solvent dependence. Instead the optical absorption involves
transitions between delocalized molecular orbitals of the
system.

2.2 The transition moment

The transition moment m12 and the dipole moments ma and mb of
the initial and final diabatic states are related by

m12 = cacb (mb 2 ma) (13)

where ca and cb are the coefficients of the wave functions
introduced earlier.21 Since cacb = Hab/nmax at the initial state
minimum21 it follows that

(14a)

For a Class III system ca and cb = 1/A2 and nmax = 2Hab.
Consequently m12 for a Class III system is equal to (mb2 ma)/2.
Defining rabM ¡(mb 2 ma)/e¡ yields eqn. (14b).

(14b)

The diabatic dipole-moment difference (mb 2 ma) is related to
the measured dipole-moment change (m2 2 m1) by eqn. (15).

mb 2 ma = [(m2 2 m1)2 + 4m2
12 ]1/2 (15a)

Eqn. (15a) can be rearranged and, with eqn. (14a), yields

(m2 2 m1)2 = (mb 2 ma)2[1 2 4(Hab/nmax)2] (15b)

For a Class III system (nmax = 2 Hab), m2 – m1 = 0 while for
Class II,

(m2 2 m1) = (mb 2 ma)[1 2 4(Hab/nmax)2] (15c)

For a Class III system eqn. (15a) also yields m12 = (mb 2 ma)/2
when 2Hab > l.

The dependence of m12/(mb2 ma) on Hab is illustrated in Fig.
2. Note the m12 for a symmetrical Class II system is directly
proportional to Hab while m12 for a Class III system is
independent of Hab.

2.3 The shape and the intensity of the charge transfer
band

It follows from time-dependent perturbation theory (Fermi’s
Golden Rule) that the shape of an absorption band is determined
by the square of the overlap of the vibrational wave functions of
the ground and excited states weighted by the Boltzmann
population of the ground state level, with each vibrational line
broadened by the solvent reorganization term (l0). Here we use
a classical approximation in which the distribution of systems
over the ground state configurations is assumed to be con-
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tinuous. This approximation is valid when hnin 5 kT. We first
consider binuclear systems in which the electronic interaction of
the donor and acceptor centers is negligible.

Weakly interacting centers. We assume that the interaction
of the two centers is weak and that the energy of the system is
adequately described by the zero-order parabolic surfaces. From
a semiclassical viewpoint the molar absorptivity esc (M21

cm21) is given by22

(16)

where N is Avogadro’s number, n(n)/N is the molar concentra-
tion of species per unit frequency of the absorbed light
possessing the nuclear configuration appropriate for the transi-
tion (i.e., n(n)dn is the molecular concentration of species able
to absorb light in the frequency range n to n + dn) and B, c and
nt are the Einstein coefficient of stimulated absorption, the
speed of light, and the total molar concentration of absorbers,
respectively. The Einstein coefficient and the transition dipole
moment are related by

(17)

so that eqn. (16) and (17) yield

(18)

Assuming a Boltzmann distribution of systems over the ground-
state energy surface gives

n(n) = n0exp[2(DG(n))/RT] (19)

where DG(n) is the excess energy of a species on the ground-
state surface as a function of the frequency of the absorbed light
and n0dn is the molecular concentration of absorbing species at
the ground-state energy minimum. By use of eqn. (1a) we
obtain

DG(n) = G(n)1 2 G1,eq = l(X(n))2 (20)

where G1,eq is the value of G1 at the ground-state equilibrium
configuration. From eqn. (4b) the ground-excited-state energy
difference (G2 2 G1) is related to X by

(21)

Substitution into eqn. (19) gives

(22)

These equations yield where nt, the total

concentration of absorbers, is given by . Sub-

stituting for n(n) into eqn. (18) and assuming that the transition

moment m12 = åY2¡m¡Y1Å does not depend on the vibrational
level i.e., on X, yields a Gaussian [eqn. (23)] for the band shape
for e/n vs. n in the weak interaction limit.

(23a)

(23b)

In eqn. (23) hn0 = l defines the maximum in the plot of e(n)/n
vs. n and corresponds to the energy of the vertical transition
from the ground-state minimum. The half width (full width of
the band at half height) of the band is given by

Dn0
1/2 = 2[4ln(2)lRT]1/2 (24a)

At room temperature eqn. (24a) reduces to

Dn0
1/2 = [2310l]1/2 (24b)

In many treatments it is assumed that n changes only slowly
over the absorption band (i.e., that the transition is very narrow
compared to the energy of the transition, Dn1/2 < < nmax) this
yields e(n)/n ≈ e(n)/nmax which leads to

ec(n) = emax exp[2(l 2 hn)2/4lRT] (25a)

(25b)

(We denote eqn. (25) as a classical treatment of the absorption
while eqn. (23) is a semiclassical treatment.). Substitution for
the constants and using eqn. (14b) gives the following
expression for emax for a Gaussian–shaped band within the
classical framework

(25c)

where emax is in M21cm21, Hab, nmax, and Dn0
1/2 are in wave

numbers and rab, the separation of the donor and acceptor
charge centroids, is in Ångstroms. Rearranging eqn. (25c)
yields the familiar Mulliken–Hush expression.

(25d)

To the extent that Dn1/2 < < n0 the classical and semiclassical
approaches yield the same results. In principle a plot of esc vs hn
will not be Gaussian and its maximum will occur at higher
energy than l, so that the reorganization energy calculated from
the halfwidth (evaluated from a plot of e vs. hn) will not be
correct; however, the errors will be small (a few per cent) for
Dn0

1/2 < 0.6nmax. Thus, while the energy of the maximum in the
plot of e/n vs. n occurs at l, when e is plotted vs. n the maximum
nmax occurs at l +2RT for l > 8RT. Similarly, (e/n)max, the
maximum in the plot of e/n vs. n, and emax are related by emax/
nmax = (e/n)maxexp(2RT/l).

Strongly interacting centers. The situation is more compli-
cated when the electronic coupling of the centers is appreciable.
We again assume a Boltzmann distribution of systems over the
ground-state energy surface but, as discussed earlier, the energy
surfaces are no longer parabolic and the minimum of the initial
state no longer occurs at X = 0. Moreover, as noted previously
by Lambert and Nöll6 and by Nelsen8 the low-energy side of the
absorption band is cut off at hn = 2Hab, the minimum
difference between the energies of the ground and excited
states.

The relevant energy expressions for a symmetric mixed-
valence system with appreciable electronic coupling are18

(26a)

(26b)

Fig. 2 Band intensity predictions of the two-state treatment.
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and

(26c)

(26d)

Solving eqn. (26b) for (1–2X)2 and substituting into eqn. (26a)
yields:

(27a)

(27b)

and, for Class III,

(27c)

Assuming a Boltzmann distribution over the energies on the
adiabatic ground-state surface and using eqn. (19), (27b) and
(27c) and integrating from 2Hab to infinity yields:

(28)

where ‘erf’ is the error function, ,
and the quantity in curly brackets is present only for Class III.
Using eqns. (18), (27b) and (27c) yields the following
expression for the shape of the band

(29a)

(29b)

where

(29c)

For Class II systems the error function can vary from ≈ 21 (Hab

= 0) to 0 (2Hab = l) while for Class III systems it varies from
0 (2Hab = l) to 1 (2Hab = H). (Note that eqn. (29) is the correct
form of eqn. (58d) in ref. 18. Figs. 11 and 12 in ref. 18 were
constructed using the correct eqn. (29)). Although the adiabatic
energy surfaces for a strongly coupled system are far from
parabolic, according to eqn. (29) the transitions are never-
theless described by a Gaussian-shaped band. The new feature
introduced is the cut-off at 2Hab. Note that, in a plot of e/n vs.
n, the experimentally observed molar absorptivity maximum for
a Class II system occurs at hn = l and is given by

(30a)

while the maximum for a Class III system occurs at hnmax =
2Hab and is given by

(30b)

Plots of e(n)/hn vs. hn for a symmetric mixed-valence system
are presented in Fig. 3.

The relative intensities of the intervalence band are also
shown. As Hab increases the band becomes truncated at low
energy but, as long as 2Hab < l2 [4ln(2)lRT]1/2 the width does
not change, Dn1/2 = Dn0

1/2 = 2[4ln(2)lRT]1/2. Beyond this
regime the observed full halfwidth Dn1/2 decreases with
increasing Hab. For 2Hab 5 l, the difference between the
energies of the transition maximum and the energy correspond-

ing to the half height of the band on the high energy side, Dnhi,
remains equal to [4ln(2)lRT]1/2. Thus the full halfwidth of the
band for a Class II system is given by

DnII
1/2 = 2[4ln(2)lRT]1/2 = Dn0

1/2 (31a)

for Hab < 1/2(l 2 Dn0
1/2/2) and

DnII
1/2 = [4ln(2)lRT]1/2 + (l 2 2Hab) = Dn0

1/2/2 + (l 2 2Hab)
(31b)

for Hab > 1/2(l 2 Dn0
1/2/2 ). In the Class III region the width is

given by

DnIII
1/2 = 2 (2Hab 2 l) + [(2Hab 2 l)2 + 4 ln(2)lRT]1/2

(31c)

For 1 < 2Hab/l < (1 + Dn0
1/2/4l) (Class IIIA), eqn. (31c)

reduces to eqn. (31b).The expressions for the band maxima and
widths in the classical treatment are summarized in Table 1
where Dnhi and Dnlo refer to the energy difference between the
band maximum and half-height points on the high and low
frequency parts of the band. Unfortunately, in real systems the
tails of intense (e.g. metal-to-ligand or ligand-to-metal charge
transfer) bands at higher energy may make evaluation of Dnhi

difficult. Unaware of the low-energy cut-off, experimentalists
have sometimes evaluated Dnlo and doubled the value to obtain
Dn1/2. Additional relationships between the band maxima and
halfwidths for the semiclassical treatment are given in supple-
mentary Table 1.†

The Mulliken–Hush expression for Hab, generalized to
include strongly coupled systems, becomes

(32a)

for Class II and

(32b)

for Class III where z is defined above.
At 2Hab = l, the Class II–III transition, the band retains

intensity only in the high energy half of the unobserved ‘full’
Gaussian band, i.e., the full width of the band at the Class II–III
transition (Dn1/2)II–III, is half of the full width of the Gaussian
band in the Class I limit.

(Dn1/2)II–III = [4ln(2)lRT]1/2 = Dn0
1/2/2 (33a)

Similarly, the expression for the electronic coupling element at
the Class II–III transition, (Hab)II–III, resembles eqn. (25d) but is
for a ‘half’ Gaussian band

(Hab)II–III = 2.06 3 1022(nmaxemax(Dn1/2)II–III)1/2/rab (33b )

Although the band is only half of a Gaussian, the electronic
coupling element at the Class II–III transition is still given by
the familiar Mulliken–Hush expression. Finally, the parameter
G defined as

G = (1 2 q) (34a)

q = (Dn1/2)/(16 ln(2)nmaxRT)1/2 = (Dn1/2)/(2310nmax)1/2 (34b)

where Dn1/2 and nmax are in wave numbers, provides a measure
of the degree of delocalization. For Class II systems

q = (Dn1/2)/(Dn0
1/2 ) (34c)

and

Dn1/2 = Dn0
1/2 (1 2 G) (34d)

At low energies, when the cut-off does not decrease the

bandwidth (i.e., , q = 1, G = 0. q
decreases to 0.5 and G increases to 0.5 at the Class II–III

Chem. Soc. Rev., 2002, 31, 168–184 173



transition. Consequently G is zero for a very weakly interacting
system and 0.50 for a system at the Class II–III transition. For
2Hab/l between the cut-off value of (1 2 Dn0

1/2 /2l) and unity
(Class IIB) G is given by

G = 1/2 2 (l 2 2Hab)/(Dn0
1/2 ) (34e)

The ratio q introduced above is defined in the same spirit as R
introduced by Nelsen.8 However, in contrast to the earlier
assignment,8 the denominator of q is not necessarily the high-
temperature width of the absorption band. As is evident from the
expression for the cut-off condition given above, the cut-off
occurs earlier (i.e., at smaller Hab) at higher temperatures.

For 2Hab > l, the Class III regime, only the high-energy side
of the band remains and the highly asymmetric band shifts to
higher energy and becomes increasingly narrow as Hab

increases. The observed maximum is now at hn = 2Hab.
Finally, when 2Hab > > l only a sharp line at hn = 2Hab

remains and G approaches unity.

Calculated values of Dn1/2/l and G are plotted vs. 2Hab/l for
l/RT = 20 and 40 in Fig. 4.

3 Comparison of the two-state model with
experiment

We turn now to a comparison of predictions of the two-state
models with experimental data for two families of diruthenium
complexes, those bridged by a dicyanamide (dicyd22) and those
bridged by a pyrazine (pz) ligand. As the metal–metal
separation is essentially constant within a family (pz 6.9 Å;
dicyd22 13.2 Å), l should also be essentially constant, but band
narrowing is predicted as coupling increases. (Variations in the
supporting ligands such as ammonia and pyridine introduce
some variations in li and l0.) The dicyd22-bridged complexes
have recently been found to exhibit striking solvent sensitive

Fig. 3 Band shape predictions from the two-state treatment. Plots of free energy vs. the nuclear configuration coordinate X (top set) and relative e(n)/n vs.
hn (bottom set) for a symmetric mixed-valence system for increasing values of 2Hab/l with l = 8000 cm21. The values of 2Hab/l ( Hab, cm21 for (a), (b),
(c) and (d) are 0.02 (80), 0.2 (800), 1.0 (4000) and 1.5 (6000), respectively. The values of e(n)/n are scaled to yield an oscillator strength proportional to the
square of the calculated transition dipole moment, m12. The maximum values of e(n)/n for (a), (b), (c) and (d) are 2.2 3 1024, 2.2 3 1022, 1.1 and 3.6,
respectively.

Table 1 Band maxima and widthsa for different mixed-valence classes in a classical two-state treatment

Cut-off Location Condition nmax Dnlo Dnhi

Class I 2Hab/l < < 1 l Dn0
1/2/2 Dn0

1/2/2
Class IIA 0 < 2Hab/l < (1 2 Dn0

1/2/2l) l Dn0
1/2/2 Dn0

1/2/2
Class IIB (1 2 Dn0

1/2/2l) < 2Hab/l < 1 l l 2 2Hab Dn0
1/2/2

Class II–III limit 2Hab/l = 1 l = 2Hab 0 Dn0
1/2/2

Class IIIA 1 < 2Hab/l < (1 + Dn0
1/2/4l) 2Hab 0 Dn0

1/2/2 + l 2 2Hab

Class III 2Hab/l > 1 2Hab 0 Eqn. (31c)
a Dn1/2 = Dnlo + Dnhi; Dn0

1/2/2 = [4ln(2)lRT]1/2
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properties.23 In the diruthenium(III) complexes, the oscillator
strength of the LMCT transition and reduction potentials
increase dramatically as solvent donor properties diminish and
magnetic properties range from diamagnetic to paramagnetic.
The mixed-valence complexes exhibit behavior ranging from
Class II to borderline Class III to fully Class III, depending on
substituents and solvent. Thus the pz- and dicyd22-bridged
series provide an opportunity to study the Class II–III transition
moderated by electron and hole superexchange mechanisms.
For the pz-bridged complexes, MLCT and MMCT transitions
are generally separated by !1 eV. By contrast for the dicyd22

series, the LMCT band for the III, III complex and the MMCT
band of the II, III complex are very similar in position. Thus, for
purposes of describing the properties of the MMCT bands, a
two-state model is expected to be more valid for the pz-series,
while a three-state description might reasonably be expected to
be necessary for the dicyd22 series. However, to describe both
MMCT and MLCT/LMCT band properties, a minimum of four
states must be included. Three- and four-state treatments are
presented later.

Intervalence band widths and maxima for mixed-valence
Ru(II)/(III) complexes are summarized in supplementary Table
2.† DG0

com values for Class(II)

Ru(II)–Ru(II) + Ru(III)–Ru(III) = 2Ru(II)–Ru(III) (35a)

and for Class (III)

Ru(II)–Ru(II) + Ru(III)–Ru(III) = 2Ru(II.5)–Ru(II.5) (35b)

(generally obtained from cyclic voltammetry) and literature
assignments of the electronic ground state (Class II or III) are
also included, along with G values calculated from the spectral
data and the electronic structure previously assigned to the
mixed-valence complex.†

The electronic structure (Class) assignments previously made
for the mixed-valence complexes are in agreement with the
‘prediction’ obtained from G. The G values indicate that
[{Ru(NH3)5}2(m-pz)]5+ is a strongly coupled Class III system (G
= 0.63) while the corresponding 4,4A-bpy-bridged complex is a
weakly coupled Class II system (G = 20.1 in water). The pz-
bridged species exhibit a wide range of behavior ranging from
weakly coupled Class II (the ((phenX)2RuCl)2(m-pz)5+ series, G
= 20.1 to 20.2, for example) to strongly coupled species at the
Class II–III transition (the trans-((NH3)4LRu)2(m-pz)5+ series,
G = 0.5, for example). Similarly, the Me2dicyd22 and dicyd22

bridged9 [{mer,mer-Ru(NH3)3(bpy)}2(mL)]3+ complexes are
assigned to Class III (G = 0.6) while the corresponding
[{trans,trans-Ru(NH3)4(py)}2(m-L)]3+ complexes are border-
line Class II–III systems. Consistent with its Class III
assignment the cyanamide stretching frequencies of [{trans-
,trans-Ru(NH3)4(py)}2(m-Me2dicyd)]3+ in acetonitrile were re-
cently shown to be the average of the corresponding frequencies

of the fully oxidized and reduced complexes.24 The dicyd22

bridged complexes are generally strongly coupled Class II
except for [{Ru(NH3)5}2(m-Cl4dicyd2-)]3+ which is weakly
coupled (G = 0.4)(Table S2)†. Although similar Class
assignments have been made on the basis of the comproportio-
nation constants and the intervalence band intensities for the
various systems, the band shape criterion has the advantage of
simplicity in that the concentration of the mixed-valence
complex need not be known. The band shapes and electronic
coupling elements for the dicyd22 derivatives have also been
discussed by Nelsen with similar conclusions.8

Extent of delocalization

The transition from weakly coupled Class II to Class III is
driven by increasing electronic interaction Hab. As noted earlier,
the value of G reflects whether a particular system is weakly
coupled, moderately coupled Class II, at the Class II–III
transition, or strongly coupled. For l ~ 8000 cm21 in a two-
state model, these four regimes correspond to 0 < G < 0.1, 0.1
< G < 0.5, G ≈ 0.5 and G > 0.5, respectively, at room
temperature. For Class IIB and borderline Class II–III systems,
2DG0

com = 2Hab
2/l.25 From eqn. (34e), at room temperature

(2DG0
com)1/2 and G are related by

(2DG0
com)1/2 (cm21/2) = [(l/2)1/2 2 17] + 34G (35c)

As shown in Fig. 5 this relationship holds up fairly well for both
dicyd22- and pyrazine-bridged diruthenium complexes in
acetonitrile. (The comproportionation free-energy changes have
been corrected for the statistical factor and for changes in the
Coulomb repulsion of the metal centers using a point charge
model.25) Slopes and intercepts for the dicyd22 systems are 53,
24 cm21/2 in acetonitrile and nitromethane and 36, 28 cm21/2 in
DMSO and acetone, respectively. For the pz system, the slope
and intercept are 29, 34 cm21/2, respectively, for acetonitrile.
Except for the dicyd22 systems in acetonitrile and nitro-
methane, the slopes are close to the value predicted by eqn.
(35c). The intercepts for the dicyd22 systems yield l1/2 values
of 58 and 64 cm21/2, somewhat smaller than the corresponding
(nmax)1/2 values in Table S2.† By contrast, the intercept for the
pz systems yields l1/2 of 78 cm21/2, in reasonable agreement
with the (nmax)1/2 values.

Electronic coupling mechanisms

Within a superexchange framework the coupling in the pz and
4,4A-bpy-bridged complexes involves ‘electron transfer’ via the
p*-LUMO of the bridging ligand while coupling in the dicyd22

bridged complexes involve ‘hole transfer’ via the bridging
ligand’s p-HOMO. In the latter case replacing the coordinated
ammonia by pyridine ligands increases the Ru(II)/(III) reduction
potential thereby decreasing the energy gap for hole transfer and
increasing the electronic coupling of the ruthenium centers. By
contrast, replacing the electron donating –CH3 by the electron-
withdrawing Cl in the bridging ligand decreases the electronic
coupling of the centers by making the bridge more difficult to
oxidize.

In the strong coupling regime, there is little or no charge
transfer associated with the ‘intervalence charge-transfer transi-
tion’. Strongly coupled systems require a molecular orbital
description, with intense transitions involving bonding (B),
nonbonding (N), and antibonding (A) molecular orbitals. The
character of the ‘metal-to-metal charge-transfer transition’
depends upon the metal–metal coupling mechanism. For the
case of limiting MLCT superexchange, which involves vacant
p* levels of the bridge, the MMCT transition becomes the
bonding-to-nonbonding (B ? N) transition. For the case of
limiting LMCT superexchange, MMCT evolves to a non-
bonding-to-antibonding (N ? A) transition in the Class III

Fig. 4 Band width predictions from the two-state treatment. Plots of Dn1/2/l
(left axis) and G (right axis) vs. 2Hab/l for l/RT = 20 and 40 (l = 4000,
8000 cm21).
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limit. The coupling schemes for pyrazine and (CH3)2dicyd22

bridged diruthenium complexes26,27 in Fig. 6 contrast MLCT
and LMCT coupling mechanisms.

The electronic structures of strongly coupled systems can be
related to those of analogous systems in the weakly coupled
regime. For example, the band at 1570 nm in the spectrum of
(NH3)5RupzRu(NH3)5

5+, for which G = 0.64, can also be
described as the bonding-to-nonbonding (B ? N) transition
between molecular orbitals formed from the two Ru dxzlevels.27

A much lower energy transition observed in the infrared region
(nmax = 2000 cm21, Dn1/2 = 1400 cm21, e = 300 M21 cm21,
G = 0.35)28 may be described in terms of a localized
nonbonding-to-nonbonding molecular orbital (n ? N) transi-
tion. As another example, in the series of N2-bridged diosmium
complexes,10 strong (p-backbonding) electronic interaction,
along with spin orbit coupling, leads to a situation in which the
bonding-to-antibonding transition of MMCT parentage is not
directly observable because the antibonding levels are filled;
however, the energies of these transitions, 2Hab ~ 6500 cm21,
can be estimated from the energies of observable transitions to
the nonbonding d orbital hole.

High symmetry pentakis bridged mixed-valence complexes,
such as the decaammine series, are particularly useful because
their spectroscopy is simpler than that of the lower symmetry
species. Recent work with pentacyano complexes has made
possible comparison of the homologous series [M(CN)5]2pz52,
M = Fe, Ru, Os.29 The cyanide ligands confer extraordinarily
solvent dependent thermodynamics on their complexes. While
MMCT is difficult to observe for aqueous solutions, fairly

stable mixed-valence complexes can be generated in organic
solvents and their MMCT bands observed. Spectral assign-
ments for [Os(CN)5]2pz52 in acetonitrile were made by analogy
with assignments for [(NH3)5M]2pz5+ (M = Ru, Os). Thus the
7170 cm21 band (Dn1/2 = 1450 cm21) with G = 0.64 indicates
a delocalized diosmium species. However vibrational data
indicate valence trapping, at least on the vibrational timescale.
The 4000 cm21 band (Dn1/2 = 1500 cm21, G = 0.51) was
assigned to MMCT for [Fe(CN)5]2pz52 in acetonitrile. Vibra-
tional spectroscopic studies again indicated borderline Class II–
III behavior. By contrast, the 5682 cm21 band assigned to
MMCT for [Ru(CN)5]2pz52 in dichloromethane is broad (Dn1/2

= 4200 cm21, G = 20.16), clearly indicating a Class II system.
The three species have surprisingly similar values for electro-
chemically determined DG0

com: 2742 (Os), 2582 (Fe), and 2260
(Ru) cm21. The cyclic voltammetry was conducted for
millimolar solutions of complex in 0.1 M tetrabutylammonium
hexafluorophosphate; for Os in acetonitrile at 298 K, for Fe in
acetonitrile at 248 K, and for Ru in dichloromethane at 298 K.
By contrast, the spectroelectrochemical measurements were
made on ca. 0.5 M solutions of complex in acetonitrile at 298 K.
If ion pairing is absent, the electrostatic correction to DG0

com is
much greater for the Ru complex in dichloromethane (1920
cm21 vs. 240 cm21 for acetonitrile at 298 K). It is not clear
whether DG0

com for Fe at 298 K would be greater or smaller
than the value determined at 248 K. Thus, while it is not feasible
to use the DG0

com values in a quantitative way, it is clear that
exploitation of the organic solvents of weak acceptor character
makes it possible to observe significant metal–ligand and

Fig. 5 (DG0
com)1/2 vs. G for dicyd22-bridged complexes (left) in CH3CN and nitromethane (squares) and in dimethyl sulfoxide and acetone (circles) and

(right) for pz-bridged mixed-valence complexes in CH3CN.

Fig. 6 Schematic molecular orbital diagrams for bridged mixed-valence complexes in which coupling involves the bridging ligand LUMO (MLCT, pz, left)
and the bridging ligand HOMO (LMCT, dicyd22, right).
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metal–metal coupling for the pentacyano series. These and
related30 studies also highlight the role of the ancillary (cyanide)
ligands in modulating the M–pz backbonding interaction which
decreases in the order Fe > Os > Ru for M(CN)5

32.

Comparison with spectroscopic parameters

Fig. 7 summarizes results of the two-state treatment directly
applicable to the experimental data; normalized halfwidths,

band maxima, and molar absorptivities calculated from the two-
state model are plotted against G and 2Hab/l. The halfwidth is
thus predicted to be a linear function of G, even in the Class III
regime, the slope and intercept of 2n0

1/2 and +n0
1/2, respectively.

nmax is a constant (l) in the Class II region and increases in
Class III, G > 0.5. The value of emax is predicted to increase
with Hab

2 in Class II, and increases even more rapidly for Class
III.

Band maxima

Experimental band maxima are presented in Fig. 8. For some of
the very weakly coupled species, G < 0, indicating that the band
is too wide in the weak coupling regime; spin-orbit splitting has
been considered as a source of this broadening.31 The dicyd22

data do show a remarkable constancy of nmax, even amongst the
different series derived by successively replacing NH3 by

pyridyl ligands. By contrast, for the pz-bridged complexes, nmax

remains constant within a structure class, but is smaller for the
tetraammine and pentaammine species. The Class III value of
nmax is predicted to increase with Hab (Heff) [eqn. (1)], a trend
not especially evident in either data set. The l values implicated
for the different series do not reflect the behavior expected from
a dielectric continuum model. Thus l should decrease as
coordination shell radius increases, i.e., pentaammine > tetra-
ammine > triammine; nearly the opposite behavior is found. l0

is predicted to increase as the solvent function (1/Dop–1/Ds).
Such dependencies have been reported,4,5 but for the tabulated
dicyd22 data, which are of a magnitude consistent with the
dielectric continuum model, this dependence is not detectable.
Breakdown of simple dielectric continuum solvent behavior32 is
expected when the donor/acceptor radii are greater than the
donor/acceptor separation. Ion pairing can confound studies in
low-dielectric organic solvents. Specific solvent effects evi-
dently dominate many systems.33

Band shapes

To summarize the principal features of the intervalence band
shape for symmetrical systems predicted by the classical two-
state model: For a very weakly interacting system, the band is
Gaussian shaped with G ~ zero and full-width-at-half-height,
Dn0

1/2. As Hab increases, the band becomes truncated on the low-
energy side, but G remains equal to zero until the cut-off starts
to decrease the full width at half height. As Hab increases
further, G approaches 0.50, the value for a system at the Class
II–III transition, and Dn1/2 ~ 0.5 Dn0

1/2.
Data for dicyd22 (left) and pz (right) are plotted in Fig. 9.

From eqn. (31), the plots of Dn1/2 vs. G for Class II and Class II–
III systems with constant nmax should be linear with intercept =
2(slope) = Dn0

1/2 = (2310l)1/2. For dicyd, slope = 2(3.8 ±
0.1) 3 103 cm21 and intercept = (3.96 ± 0.04) 3 103 cm21,
consistent with l = 6.6 3 103 cm21. For pz, slope = 2(4.4 ±
0.4) 3 103 cm21 and intercept = (4.1 ± 0.2) 3 103 cm21,
consistent with l = 7.9 3 103 cm21.

Band intensity

For the two-state treatment in the weak coupling limit, emax and
fos ( = 4.6 3 1029 emaxDn1/2, for a Gaussian; e(M21cm21,
Dn1/2, cm21) are predicted to increase as Hab

2 [eqn. (25c)]. Near
the Class II–III transition, they are proportional to Hab. In the
Class III regime, m12 is constant ( = (ma2 mb)/2) (Fig. 2), while
emax continues to increase with Hab. Since the band narrows
with increasing Hab, emax should increase with increasing Hab =
Eop (Fig. 3). However, since no significant variation in Eop is
found (Fig. 8) for either L series at G ~ 0.5, emax should be

Fig. 7 Plots of normalized Dn1/2, nmax, and emax vs. G (left) and 2Hab/l
(right) for l = 4000, 8000, 16000, and 30000 cm21. The values of l
increase in the direction of the arrows. The quantities have been normalized
by their largest value for a particular l. The normalization values are Dn0

1/2
for Dn1/2 and nmax and emax at 2Hab/l = 1.5 (its maximum value) for nmax

and emax, respectively. In the left hand plot, the values of the normalized
Dn1/2 for different l values are very similar while the values of the
normalized nmax for different l are the same in the right hand plot.

Fig. 8 nmax as a function of G for dicyd22-bridged (left) and pz-bridged mixed-valence complexes (right) in acetonitrile.
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essentially constant if the G = 0.5 species are Class III. The
expected increase in emax with G for G between 0 and 0.5 is
observed for both bridges, as illustrated in Fig. 10. For the
dicyd22-bridged species emax seems to level off and decrease at
high G, but no such trends are evident for the pz-bridged
complexes. The band oscillator strengths are much smaller,
however, for the pz-bridged complexes (upper value ca. 0.1)
compared to the dicyd22-bridged species (upper value ca. 0.3),
consistent with the smaller value of the diabatic transition
moment for pz (short length).

In summary, the trends in Figs. 8–10 indicate that the two-
state analysis of the shapes of the MMCT bands of the two
series of bridged, binuclear ruthenium mixed-valence com-
plexes is a useful and apparently valid one. A two-state
treatment does not, however, address other absorption features
of the complexes or the mechanism for the (bridge-mediated)
electronic coupling of the metal sites. To address these
interesting and important issues, additional states must be
considered.

4 A three-state model for the charge transfer
transition

We next consider the formalism for bridged mixed-valence
systems in which the electron transfer is mediated by a third
state formed by charge transfer to or from the bridging group.
When the mediating state is of high energy the electron transfer
can be treated analytically by invoking perturbative (super-
exchange) mixing of the reactant, product and mediating states:

the wave functions for the former diabatic states are modified by
including perturbative contributions from the higher electronic
states. On the other hand, if the mediating state is sufficiently
low lying, charge transfer can take place by a sequential electron
or hole transfer reaction (chemical mechanism) in which the
bridging group becomes reduced [eqn. (36a)] or oxidized [eqn.
(36b)], see Fig. 6.

DBA ? D+B2A ? D+BA2 (36a )

DBA ? DB+A2 ? D+BA2 (36b)

In general, a 3 3 3 Hamiltonian must be solved. For a three-
state system in which the third state lies at intermediate energy
a numerical approach is used here.

Free-energy surfaces

As discussed above, the impact of the third state depends upon
its energy relative to the other two diabatic states: DG0

ac is the
minimum (a or b)-to-minimum (c) energy difference. Because
of the symmetry of the situation considered here, the third state
minimum lies directly above the intersection of the diabatic
curves at X = 1/2; it may however lie outside the x–y plane.
Here, the third state is assumed to have the same force constant
as the other two diabatic states (which are the same as those
considered for the two-state model).

We first consider two cases depending on whether the
mediating state lies above or just below the intersection of the
reactant and product diabatic states. These situations are
illustrated in Figs. 11 and 12, respectively, in which only

Fig. 9 Plots of Dn1/2 vs. G for dicyd22-bridged (left) and pz-bridged mixed-valence complexes (right) in acetonitrile.

Fig. 10 Plots of e vs. G for dicyd22-bridged (left) and pz-bridged mixed-valence complexes (right) in acetonitrile.

178 Chem. Soc. Rev., 2002, 31, 168–184



coupling between the bridge (c) and the reactant and product
(a,b) diabatic states is considered, i.e., Hab = 0. The dashed
lines are the diabatic states while the solid lines are the adiabatic
states obtained from calculations of a three-state model with the
parameters given in the figure caption. At the nuclear
configuration corresponding to the intersection of the reactant
and product diabatic states the energy of the middle adiabatic
state is in each case equal to that of the intersection, i.e., it is
‘noninteracting’ at the nuclear configuration of the intersection.
Contrary to the case for direct coupling of two diabatic states
(Fig. 1), the separation of the lower and middle adiabatic states
at the intersection of the reactant and product diabatic states
(Hac = Hbc) is not symmetric about the intersection: the lowest
adiabatic state is stabilized while the energy of the middle state
does not change. As the coupling (Hac and Hbc) increases, the
minima of the lowest three-state surface approach one another
as was earlier seen for the two-state model.

It is evident from Fig. 12 that when the mediating state is
sufficiently low lying, the middle adiabatic state develops a
double minimum and the low energy adiabatic state develops a
third minimum between the reactant and product states. In this
case the mediating state may be of sufficient stability to be
populated as an intermediate in the overall electron transfer
reaction (chemical mechanism) as discussed above.

In the intersection region the three-state problem can be
solved analytically. When the reactant–bridge and product–
bridge couplings are equal (Hac = Hbc) and the reactant–
product coupling, Hab, is zero, the separation between the
adiabatic surfaces at X = 1/2 is given by

(37a)

(G3 2 G1)X=0.5 = (DGg
2 + 8H2

ac)1/2 (37b)

where DGg is the difference between the energy of the diabatic
high-energy state and the energy of the reactant and product
diabatic states at the intersection, i.e., DGg = Gc2 Gb = Gc2

Ga. If DGg > > Hac, Hbc we obtain

(38)

When DGac and DGbc > > Hac = Hbc and Hab = 0, the three-
state description approaches an ‘equivalent’ two-state (super-
exchange) treatment with the effective coupling between the
two states, Heff, given by34,35

(39a)

(39b)

The effective coupling in the superexchange treatment is a
function of the nuclear configuration of the system through the
dependence of DGeff on X. The ‘equivalent’ two-state approx-
imation breaks down as Heff increases due to either increasing
Hbc or Hac or decreasing DGeff.

The three-state and ‘equivalent’ two-state surfaces are
compared in Fig. 13. When Heff is small (i.e., the energy of the

mediating state is high compared to the coupling), the
‘equivalent’ two-state surface parallels the low energy three-
state surface, but is displaced to higher energy for X between 0
and 1. The separations of the two lower adiabatic surfaces are
the same at X = 1/2 in the ‘equivalent’ two-state and three-state
treatments. However, for small or large values of X the energy
of the reactant or product state can approach that of the bridging
state [eqn. (39)], DGeff = 0) and produce singularities in the
‘equivalent’ two-state surface (protuberances in Fig. 13).

Fig. 11 Diabatic (dashed lines) and adiabatic (solid lines) free-energy curves
for a three-state system with DG0

ac = 8000 cm21, Hac = Hbc = 2000 cm21

(l = 8000 cm21). The energies of the MMCT and MLCT transitions are
also shown.

Fig. 12 Diabatic (dashed lines) and adiabatic (solid lines) free-energy curves
for a three-state system with DG0

ac = 800 cm21, Hac = Hbc = 200 cm21

(lab = 8000 cm21, lac = 2000 cm21).

Fig. 13 Diabatic (dashed lines) and adiabatic (solid lines) free-energy curves
for a three-state system with DG0

ac = 8500 cm21, Hac = Hbc = 1500 cm21

(lab = 8000 cm21, lac = 2000 cm21). The equivalent two-state energy
curves are shown as dotted lines.
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Absorption band energies, shapes, and intensities

To calculate the absorption profiles we assume a Boltzmann
distribution of systems on the ground-state surface (as before).
The resulting free-energy surfaces and absorption profiles are
compared in Fig. 14. Note that the mediating third state can be
either metal-to-ligand charge transfer [MLCT, eqn. (36a)] or
ligand-to-metal charge transfer (LMCT, eqn. (36b)) in nature. It
is evident from Fig. 14 that both the MMCT and the MLCT/
LMCT transitions increase in intensity with increasing Hac in
the Class II regime. At the Class II–III transition, the MLCT/
LMCT intensity has vanished and the ‘MMCT’ transition has
become narrow and intense. The shifts in Eop and band width
with increased coupling in the three-state treatment are shown
in Fig. 15. (While the perturbative formalism suggests that Eop

and Dn1/2 should be plotted against H2
ac/(DGeff l), plots such as

those in Fig. 15 show a more systematic behavior when H2
ac/

(DG0
acl) is used.)

It is evident from Fig. 15 that, for systems similar to these
illustrated in Fig. 11, the MMCT band maximum decreases in
energy as Hac ( = Hbc) increases in the Class II region. This
occurs because increased coupling decreases the energy of the
two metal-centered states G1, G2 and increases the energy of the
mediating state G3. The effect is larger for the product state than
it is for the reactant state since the energy gap between the
mediating state and the product state is smaller. Thus the energy
difference, Eop, ( = G2 2 G1) between the reactant and product
state decreases. Note that increasing Hac ( = Hbc) and decreasing

DG0
ac have similar effects on the energy surfaces and spectra.

This behavior contrasts significantly with two-state behavior in
which Eop remains equal to l until the Class II–III transition.
Moreover, for a given value of the effective electronic coupling
the bands are narrower in the three-state than in the two-state
treatment. In the Class III region, Eop increases with increasing

Fig. 14 Band Shape predictions from the three-state treatment. Plots of free energy vs. the nuclear configuration coordinate, X (top set) and relative e(n)/n
vs. hn (bottom set) for a symmetric mixed-valence system for increasing values of 2H2

ac/(DG0
acl) with lab = 8000 cm1, lac = 2000 cm21 and DG0

ac = 16000
cm21. Both MMCT (lower energy) and MLCT/LMCT (high energy) bands are shown. The values of 2H2

ac/(DG0
acl) (Hac, cm21 for (a), (b) and (c) are 0.02

(1130), 0.2 (1380) and 1.0 (8000), respectively. The values of e(n)/n are scaled to yield an oscillator strength proportional to the square of the calculated
transition dipole moment, m12. The maximum values of e(n)/n for the low and high energy bands in (a), (b), (c) and (d) are 3.0 3 1024, 4.1 3 1023; 0.29,
0.23; and 1.1, 3.2 3 10230, respectively. See Fig. 3 for comparable two-state plots.

Fig. 15 Predictions of the three-state treatment for MMCT. Eop (top set) and
Dn0

1/2 (bottom set) vs. 2H2
ac/(DG0

acl) for different values of DG0
ac (lab =

8000 cm21 and lac = 2000 cm21).
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Hac, but with a slope that diminishes as the mediating state drops
in energy. Furthermore, the MLCT (LMCT) transition increases
in energy with increasing Hac, with the shifts being greater than
for the MMCT transition (Fig. 14) because the magnitude of Hac

affects the lowest and highest adiabatic surfaces in opposite
directions. Note that while the Class II–III transition occurs at
2Heff = l in the ‘equivalent’ two-state (superexchange)
treatment it occurs somewhat earlier in the three-state treat-
ment.

As found for the two-state model (Fig. 3), the MMCT band is
truncated on the low-energy side as the system moves from
Class II to Class III by virtue of increased coupling, increasing
Hab in the two-state case and increasing Hac = Hbc in the three-
state case. Truncation of the MLCT/LMCT band also occurs as
the lowest and highest adiabatic three-state surfaces become
increasingly nested.

Fig. 16 and 17 present the dependences of G [eqn. (34)] and
the transition moment on the three-state coupling parameter.
The transition moment is calculated using (see ESI†)

(39c)

In the equivalent two-state model for MMCT transitions the
value of m12/(mb 2 ma) = Heff/l where Heff is given by eqn.
(39a). The figure shows that for very large DG0

ac the equivalent
two-state model is a good approximation of the three-state
model. As DG0

ac decreases the slope becomes less than 1;
however, an essentially linear relationship betweenm12/(mb 2

ma) and Heff/l is maintained until DG0
ac ≈ l. This is seen in Fig.

17 for the curve with DG0
ac = 8000 cm21. When DG0

ac < l the
equivalent two-state model is no longer valid. In the Class III
region the two-state model predicts m12/(mb 2 ma) = 1/2 while
the three-state model has a limiting value that is dependent on
DG0

ac and l. However the equivalent-two-state model gives
transition moments that are within 80% of those given by the
three-state model when DG0

ac > l.
Note that the B ? A ‘MLCT/LMCT’ transition in the Class

III system has no intensity in this three-state treatment because
the dipole moments of the initial and final diabatic states are
both equal to (ma + mb)/2. Nevertheless the bridge MLCT/
LMCT states couple to the ground diabatic states because Hac =
Hbc ≠ 0.

The symmetrical vibration mode

An additional important feature of a more comprehensive three-
state model is the inclusion of the symmetric vibrational mode36

The resulting energy surfaces are illustrated in Fig. 18. This

mode is normally omitted in the two-state treatment37 because
it simply translates the two energy surfaces.

The addition of the symmetric vibrational mode to the three-
state model has only a modest effect on Eop and Dn1/2 in the
Class II region (compare Fig. 19 to Fig. 15). The point at which
the full width starts to decrease due to the low energy cut-off is
independent of DG0

ac. In the Class III region the symmetric
mode effectively broadens the absorption band. However, not as
much width is gained on adding the symmetric vibrational mode
as was lost on going from the two-state to the three-state model.
The effect on G of including a third state is shown in Fig. 20. In
the Class II region G is smaller, while in the Class III region G
becomes a function of DG0

ac as the coupling increases.

Fig. 16 Spectral predictions of the three-state treatment. G vs. H2
ac/(DG0

acl)
for DG0

ac = 6200 (top curve), 8000, 16000, 32000, and 500000 cm21 (l =
8000 cm1).

Fig. 17 Band intensity predictions (MMCT) of the three-state treatment.
Plot of m12/(mb – ma) vs. H2

ac/(DGeffl) for DG0
ac = 6200 (bottom curve),

8000, 16000, 32000, and 500000 cm21 (lab = 8000 and lac = 2000 cm21).
When the third state lies sufficiently high (top curve), the slope given by the
equivalent two-state model is observed.

Fig. 18 Three-dimensional diabatic energy surfaces for the initial, final and
mediating (reduced or oxidized bridge) states illustrating the effect of
including the symmetric vibrational mode. DG0

ac = 12000; the minima in
the antisymmetric and symmetric modes are at [20.5, 0], [0.5, 0] and [0,
0.5] for the reactant, product and mediating diabatic states, respectively.
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5 A four-state model for the charge transfer
transition

The above treatment, while helpful for systems in which only
the transferring electron needs to be considered, is not
applicable to systems with several d electrons. Symmetric D2h

Ru(II)–B–Ru(III) complexes such as the pyrazine-bridged dimer
[(NH3)5Ru]2pz5+ fall into the latter category. For these systems
at least three electrons need to be considered. A simple
molecular orbital treatment (Fig. 6) of the delocalized system
(Class III) in which a dxz orbital on each ruthenium (z is the
molecular axis and the x axis is perpendicular to the pyrazine
plane) and a pyrazine p* orbital is considered and metal–ligand
interactions are neglected yields two metal-centered orbitals
(one combination of symmetry g and the other of symmetry u)
and a bridge orbital of u symmetry. Interaction of the two u
orbitals yields a bonding (B) and antibonding (A) pair resulting
in three molecular orbitals: one bonding metal–ligand (predom-
inantly metal) orbital, one nonbonding (N) metal orbital, and an
antibonding metal–ligand (predominantly ligand) orbital. (see
Fig. 6) The state wave function for the three-electron system is
a product of the occupied molecular orbitals. The electron
configurations of the four lowest energy states are shown
below.

Population

State B N A Designation
Sym-
metry

1 —– — GS (reactant) g

2 — —–

MMCT
(product) u

3 —– — MLCT1 u
4 — – — MLCT2 g

Free-energy surfaces

A four-state model requires the energies and electronic
couplings of the diabatic (Mulliken–Hush) states, as well as
their dipole moments. The metal-based diabatic states have
minima at X = 0 and 1, while the ligand-based states are
assumed to have minima at X = 0.5 ± d (d = !0). All diabatic
states are assigned the same force constant (the same value as
used in the previous sections). This results in different
reorganization energies for the various transitions. The diabatic
state energies are then

Ga = l(X)2

Gb = l(X 2 1.0)2

Gc = l(X 2 0.5 + d)2 + DG0
ac

Gd = l(X 2 0.5 2 d)2 + DG0
ac

and their minima are at 0, 1.0, (0.5 2 d) and (0.5 + d),
respectively. The dipole moment differences between the upper
and lower states are assumed to be (mc2 ma) = (0.5 2 d)(mb2

ma) and (md2 ma) = (0.5 + d )(mb2 ma). All transition moments
for the diabatic states are zero as required for the generalized
Mulliken–Hush diabatic formalism.16

We consider both nondisplaced and displaced upper states
corresponding to d = 0 (Case 4A) and d = 0.3 (Case 4B),
respectively. In Case 4A the two upper states are degenerate for
all X with minima located at X = 0.5 while in Case 4B the two
upper states are horizontally displaced with minima at X = 0.2
and 0.8, respectively. This is illustrated in Fig. 21.

Mixing of the four diabatic states leads to four adiabatic
states. As before, we assume no direct coupling between states
a and b (Hab = 0). We also assume there is no direct coupling
between states c and d (Hcd = 0) and that the remaining
couplings are equal (Hac = Had = Hbc = Hbd). With weak
coupling, states 1 and 2 are predominantly metal centered, while
states 3 and 4 are mainly ligand centered. State 1 is stabilized
and state 4 is destabilized and their separation increases with
increasing coupling. While in Case 4A the energy of inter-
mediate state 3 is equal to that of state c for all values of X, in
Case 4B the energies of the two states are only equal at X = 0.5
(see Fig. 21).

Fig. 19 The consequences of including the symmetric vibrational mode in
the three-state model on band energy and half width. Eop (top set) and Dn0

1/2
(bottom set) vs. H2

ac/(DG0
acl) for DG0

ac = 6200 (bottom curve), 8000,
16000, 30000, and 500000 cm21 (lab = 8000 cm21, with the minima in the
antisymmetric and symmetric modes at [20.5, 0], [0.5, 0] and [0, 0.5] for
the reactant, product and mediating diabatic states, respectively. Compare
Fig. 15).

Fig. 20 The consequences of including the symmetric vibrational mode in
the three-state model on G. Plot of G vs. 2H2

ac/(DG0
acl) for DG0

ac = 6200 (top
curve), 8000, 16000, 30000, and 500000 cm21 (lab = 8000 cm21, with the
minima in the antisymmetric and symmetric modes at [20.5, 0], [0.5, 0] and
[0, 0.5] for the reactant, product and mediating diabatic states, re-
spectively).

Fig. 21 Four-state free-energy surfaces for Case 4A (left) and Case 4B
(right).
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At X = 0.5 the Hamiltonian can be solved analytically to
yield the following energies for the adiabatic states

where DGg is the vertical difference between the energies of the
diabatic metal-based states and the MLCT states at X = 0.5. For
the case where DGg > > Hac we obtain the adiabatic
energies:

The effective two-state (superexchange) coupling can be
defined as 2H2

ac/DGg, which is half the separation of the
adiabatic metal-based states in the four-state model. This
coupling is twice the superexchange coupling in the three-state
model (eqn. (40a)) because there are now identical couplings to
two MLCT states.

Absorption band energies, shapes, and intensities

The transition energies and transition moments can be calcu-
lated using the approach introduced earlier and by diagonalizing
the Hamiltonian numerically. Not surprisingly, similar transi-
tion energies are calculated for the two cases at high couplings
(Fig. 22). By contrast, because of different dipole moments of

the MLCT states assumed for the two cases the calculated
transition moments show both similarities and differences (Fig.
23).

In both cases the transition moment for the high energy
MLCT (1 to 4) transition becomes zero for Class III systems, as

required by the symmetry. The transition moment for the low
energy MLCT (1 to 3) transition remains equal to zero for Case
4A regardless of the electronic coupling. However, in Case 4B
this transition is weak for weakly coupled Class II systems, but
becomes the dominant MLCT transition for Class III systems.
Case 4B corresponds more closely to what is observed, i.e.,
Class III species retain “MLCT” bands. It is noteworthy that the
MMCT band maximum and strength are insensitive to whether
the upper states are nested or not. Furthermore, at high effective
coupling, the MLCT energies are the same for Case A and B,
because Case A has gone to the single minimum limit.

Other aspects of the spectra are similar to those found above
for the two- and three-state models. The band shape becomes
truncated on the low energy side and the band becomes
narrower as the electronic coupling increases. The widths of the
three bands are dependent on the values used for the force
constants and the locations of the minima.

6 Conclusions

In a two-state description of an electron transfer process there is
a minimum of two nuclear coordinates, one describing the
solvent fluctuations and the other the intramolecular vibrational
distortions of the reactants and products. The optical charge-
transfer transition can occur at any of these solvent and
vibrational (and rotational) configurations of the reactants, each
weighted by the appropriate Boltzmann factor. The parameter G
= 1 2 (Dn1/2)/(16ln(2)RT)1/2 provides a useful criterion for
determining whether a particular system is weakly coupled,
moderately coupled, at the Class II–III transition, or strongly
coupled. For a two-state model with l = 8000 cm21, these four
regimes correspond to 0 < G < 0.1, 0.1 < G < 0.5, G ≈ 0.5 and
G > 0.5, respectively, at room temperature. Similar considera-
tions also apply to a three-state model in which the electron
transfer is mediated by charge transfer to or from the bridging
group. An additional feature of the three-state model is that a
symmetrical vibration coordinate also needs to be included in
addition to the antisymmetric vibrational coordinate normally
considered in the two-state system. As discussed above,
inclusion of the symmetric mode modifies the three-state energy
surfaces and the shapes of the charge-transfer absorption bands.
To reproduce qualitatively the fact that MLCT transitions are
observed experimentally for strongly coupled systems, the four-
state Case B is required.
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